On the Impact of Robust Statistics on Imprecise Probability Models

A Review

Thomas Augustin
Department of Statistics
LMU Munich
Germany

Robert Hable
Department of Mathematics
University of Bayreuth
Germany
Imprecise Probabilities

Classical probability theory:

- Probabilities specified by exact real numbers $P(A)$
- “The probability of an event A is $P(A) = 0.4281635907\ldots$”
Imprecise Probabilities

Classical probability theory:

- Probabilities specified by exact real numbers $P(A)$
- "The probability of an event A is $P(A) = 0.4281635907\ldots""

Imprecise probabilities:

- Probabilities given by lower $L(A)$ and upper bounds $U(A)$
- "The probability of an event A lies between $L(A) = 0.38$ and $U(A) = 0.45""
Imprecise Probabilities: Sets of Probability Measures

Classical probability theory:

- A single probability measure

\[P : A \mapsto P(A) \]
Imprecise Probabilities: Sets of Probability Measures

Classical probability theory:

- A single probability measure

\[P : A \mapsto P(A) \]

Imprecise probabilities:

- A set of possible probability measures

\[\mathcal{M} = \left\{ P : A \mapsto P(A) \mid L(A) \leq P(A) \leq U(A) ~ \forall A \right\} \]

\(\mathcal{M} \) is called *structure*.
Imprecise Probabilities and Robust Statistics

Imprecise Probabilities

- Slightly different concepts; developed only recently
 - Walley (1991): coherent lower/upper previsions
 - Weichselberger (2001): interval probabilities
 - ...

- Generalization of classical probabilities
 - model uncertainties about exact, true probabilities

- Successfully applied to many engineering problems
Imprecise Probabilities and Robust Statistics

Imprecise Probabilities

- Slightly different concepts; developed only recently
 - Walley (1991): coherent lower/upper previsions
 - Weichselberger (2001): interval probabilities
 - ...
- Generalization of classical probabilities
 → model uncertainties about exact, true probabilities
- Successfully applied to many engineering problems

Robust Statistics

- Started in the 1960s
- Tries to deal with (small) deviations from modeling assumptions in statistics
- Robust statistics hardly received attention in engineering science
Imprecise Probabilities and Robust Statistics

Imprecise Probabilities
- Slightly different concepts; developed only recently
 - Walley (1991): coherent lower/upper previsions
 - Weichselberger (2001): interval probabilities
 - …
- Generalization of classical probabilities
 → model uncertainties about exact, true probabilities
- Successfully applied to many engineering problems

Robust Statistics
- Started in the 1960s
- Tries to deal with (small) deviations from modeling assumptions in statistics
- Robust statistics hardly received attention in engineering science

Close relationship between both areas
Classical Statistics

▶ A known precise statistical model \(\{ P_\theta | \theta \in \Theta \} \) is assumed
 ▶ \(\theta \): an unknown parameter
 ▶ \(P_\theta \): a probability measure depending on the unknown \(\theta \)
 ▶ True probabilities \(P_\theta(A) \) exactly known except for \(\theta \)
▶ Example: \(P_\theta \) is the normal distribution \(N(\theta, 1) \)
Classical Statistics

- A known precise statistical model \(\{P_{\theta}|\theta \in \Theta\} \) is assumed
 - \(\theta \): an unknown parameter
 - \(P_{\theta} \): a probability measure depending on the unknown \(\theta \)
 - True probabilities \(P_{\theta}(A) \) exactly known except for \(\theta \)
- Example: \(P_{\theta} \) is the normal distribution \(N(\theta, 1) \)
- Often: \(\{P_{\theta}|\theta \in \Theta\} \) not exactly true but a good approximation
Classical Statistics

- A known precise statistical model \(\{P_\theta | \theta \in \Theta \} \) is assumed
 - \(\theta \): an unknown parameter
 - \(P_\theta \): a probability measure depending on the unknown \(\theta \)
 - True probabilities \(P_\theta (A) \) exactly known except for \(\theta \)
- Example: \(P_\theta \) is the normal distribution \(N(\theta, 1) \)
- Often: \(\{P_\theta | \theta \in \Theta \} \) not exactly true but a good approximation
- **Hope:** Statistical conclusions based on \(\{P_\theta | \theta \in \Theta \} \) are approximately true
Classical Statistics

- A known precise statistical model $\{P_\theta | \theta \in \Theta\}$ is assumed
 - θ: an unknown parameter
 - P_θ: a probability measure depending on the unknown θ
 - True probabilities $P_\theta(A)$ exactly known except for θ
- Example: P_θ is the normal distribution $N(\theta, 1)$
- Often: $\{P_\theta | \theta \in \Theta\}$ not exactly true but a good approximation
- **Hope:** Statistical conclusions based on $\{P_\theta | \theta \in \Theta\}$ are approximately true
 \rightarrow not correct
A known precise statistical model \(\{ P_\theta | \theta \in \Theta \} \) is assumed

- \(\theta \): an unknown parameter
- \(P_\theta \): a probability measure depending on the unknown \(\theta \)
- True probabilities \(P_\theta(A) \) exactly known except for \(\theta \)

Example: \(P_\theta \) is the normal distribution \(N(\theta, 1) \)

Often: \(\{ P_\theta | \theta \in \Theta \} \) not exactly true but a good approximation

\textbf{Hope}: Statistical conclusions based on \(\{ P_\theta | \theta \in \Theta \} \) are approximately true

\(\rightarrow \) not correct, quite often
Classical Statistics

- A known precise statistical model \(\{P_\theta | \theta \in \Theta\} \) is assumed
 - \(\theta \): an unknown parameter
 - \(P_\theta \): a probability measure depending on the unknown \(\theta \)
 - True probabilities \(P_\theta(A) \) exactly known except for \(\theta \)
- Example: \(P_\theta \) is the normal distribution \(N(\theta, 1) \)
- Often: \(\{P_\theta | \theta \in \Theta\} \) not exactly true but a good approximation
- **Hope**: Statistical conclusions based on \(\{P_\theta | \theta \in \Theta\} \) are approximately true
 \[\text{not correct, quite often} \]
- strict assumptions lead to unreliable conclusions
Robust Statistics

- \(\{P_\theta | \theta \in \Theta \} \) is a known precise statistical model
- \(\{P_\theta | \theta \in \Theta \} \) is assumed to be approximately true:
 - \(U(P_\theta) \): neighborhood about \(P_\theta \)
 - It is possible that
 - the true distribution \(P \neq P_\theta \)
 - But: The true distribution \(P \) lies in the neighborhood about \(P_\theta \)
 - \(P \in U(P_\theta) \)
- Goal: Develop statistical procedures which are still reliable
Parametric Model $\{P_\theta | \theta \in \Theta\}$
Parametric Model \(\{ P_\theta | \theta \in \Theta \} \)
Parametric Model \(\{ P_\theta \mid \theta \in \Theta \} \)
Parametric Model \(\{ P_\theta \mid \theta \in \Theta \} \)
Robust Statistics and Imprecise Probabilities

- $\{P_\theta | \theta \in \Theta\}$ is a known precise statistical model
- Robust statistics uses neighborhoods $U(P_\theta)$ about P_θ

Theorem: Neighborhoods $U(P_\theta)$ are structures of imprecise probabilities.
Robust Statistics and Imprecise Probabilities

- \(\{ P_\theta | \theta \in \Theta \} \) is a known precise statistical model
- Robust statistics uses neighborhoods \(U(P_\theta) \) about \(P_\theta \)

Theorem: Neighborhoods \(U(P_\theta) \) are structures of imprecise probabilities.

→ Models used in robust statistics are special cases of imprecise probabilities
Robust Statistics and Imprecise Probabilities

► \(\{P_\theta | \theta \in \Theta\} \) is a known precise statistical model
► Robust statistics uses neighborhoods \(U(P_\theta) \) about \(P_\theta \)

Theorem: Neighborhoods \(U(P_\theta) \) are structures of imprecise probabilities.

→ Models used in robust statistics are special cases of imprecise probabilities

Goal:

Robust Statistics \hspace{2cm} Imprecise Probabilities

statistical procedures \hspace{2cm} generalize
Hypothesis Testing

Classical Statistics:

\[H_0 : P = P_0 \quad \text{vs.} \quad H_1 : P = P_1 \]
Hypothesis Testing

Classical Statistics:

\[H_0 : \ P = P_0 \quad \text{vs.} \quad H_1 : \ P = P_1 \]

Robust Statistics:

\[H_0 : \ P \in U(P_0) \quad \text{vs.} \quad H_1 : \ P \in U(P_1) \]
Hypothesis Testing

Classical Statistics:

\[H_0 : \ P = P_0 \quad \text{vs.} \quad H_1 : \ P = P_1 \]

Robust Statistics:

\[H_0 : \ P \in U(P_0) \quad \text{vs.} \quad H_1 : \ P \in U(P_1) \]

Imprecise Probabilities:

\[H_0 : \ P \in \mathcal{M}_0 \quad \text{vs.} \quad H_1 : \ P \in \mathcal{M}_1 \]
Hypothesis Testing

Classical Statistics:

Robust Statistics:

Imprecise Probabilities:
Hypothesis Testing: Least Favorable Pairs

Classical Statistics:

Robust Statistics:

Imprecise Probabilities:
Hypothesis Testing: Least Favorable Pairs

Classical Statistics:

\[
P_0 \quad P_1
\]

Robust Statistics:

\[
U(P_0) \quad U(P_1)
\]

Imprecise Probabilities:

\[
M_0 \quad M_1
\]
Estimation

Classical statistics

- “optimal” estimators available
- usually: “optimal” estimators are unreliable
Estimation

Classical statistics

- “optimal” estimators available
- usually: “optimal” estimators are unreliable

Robust statistics

- “optimal” robust estimators available; see e.g. Rieder (1994) and Kohl et al. (2009)
 - fix the amount of robustness/reliability you want to have
 - choose the most efficient estimator under this robustness constraint
Estimation

Classical statistics

▶ “optimal” estimators available
▶ usually: “optimal” estimators are unreliable

Robust statistics

▶ “optimal” robust estimators available; see e.g. Rieder (1994) and Kohl et al. (2009)
 ▶ fix the amount of robustness/reliability you want to have
 ▶ choose the most efficient estimator under this robustness constraint

Imprecise probabilities

▶ general estimation problems hardly considered explicitly
▶ “optimal” estimators not available so far
→ generalize theory of robust estimating to imprecise probabilities
References

The handout to this talk is also available on my homepage

http://www.staff.uni-bayreuth.de/~btms04/index.html