Data-Based Decisions under Imprecise Probability and Least Favorable Models

Robert Hable *
Department of Statistics
LMU Munich

* supported by Cusanuswerk
Robert Hable
Department of Statistics, LMU Munich (Germany)

- Education: Mathematics (in Bayreuth, Germany)
- Diploma Thesis in Robust Asymptotic Statistics (Helmut Rieder)
- Now: Ph.D. Student under the Guidance of Thomas Augustin
 → Topic: “Data-Based Decisions under Complex Uncertainty”

- Research Interests:
 - Decision Theory under Imprecise Probabilities
 - Mathematical Foundations of Imprecise Probabilities
 - Robust Statistics

Usual Decision Theory

- **States of nature:** $\Theta = \{\theta_1, \ldots, \theta_n\}$
- **Decisions:** $t \in \mathbb{D}$
- **Bounded loss functions:** $W_\theta : \mathbb{D} \to \mathbb{R}$, $t \mapsto W_\theta(t)$

| | θ_1 | \cdots | θ_i | \cdots | θ_n |
|-------|-------------|-----------|-------------|-----------|
| t_1 | $W_{\theta_1}(t_1)$ | \cdots | | | $W_{\theta_n}(t_1)$ |
| \vdots | | | | | \ddots |
| t_k | | | | | $W_{\theta_i}(t_k)$ |
| \vdots | | | | | \ddots |
| t_m | $W_{\theta_1}(t_m)$ | \cdots | | | $W_{\theta_n}(t_m)$ |
Usual Decision Theory

- States of nature: $\Theta = \{\theta_1, \ldots, \theta_n\}$
- Decisions: $t \in \mathcal{D}$
- Bounded loss functions: $W_\theta : \mathcal{D} \rightarrow \mathbb{R}$, $t \mapsto W_\theta(t)$
- Prior distribution over Θ: $\pi = (\pi_{\theta_1}, \ldots, \pi_{\theta_n})$
- Expected loss for decision $t \in \mathcal{D}$:
 $$\sum_{\theta \in \Theta} \pi_{\theta} W_\theta(t)$$

Often: Decision making on base of observations $y \in \mathcal{Y}$

- Decision functions: $\delta : \mathcal{Y} \rightarrow \mathcal{D}$, $y \mapsto \delta(y)$
- Distribution of the observation y: q_θ where $\theta \in \Theta$
- Expected loss for decision function $\delta : \mathcal{Y} \rightarrow \mathcal{D}$ is
 $$\sum_{\theta \in \Theta} \pi_{\theta} \int W_\theta(\delta(y)) q_\theta(dy)$$
Decision Theory under Imprecise Probability

- Instead of a precise prior distribution π:
 Imprecise prior distribution (coherent upper prevision):
 \[
 \Pi[f] = \sup_{\pi \in \mathcal{P}} \pi[f], \quad f : \Theta \rightarrow \mathbb{R}
 \]
 \(\mathcal{P}\): a set of precise prior distributions (credal set)

- Instead of a precise distribution q_{θ} of the observation y:
 Imprecise distribution of the observation y (coherent upper prevision):
 \[
 \overline{Q}_{\theta}[g] = \sup_{q_{\theta} \in \mathcal{M}_{\theta}} q_{\theta}[g] \quad \forall \theta \in \Theta, \quad g : \mathcal{Y} \rightarrow \mathbb{R}
 \]
 \(\mathcal{M}_{\theta}\): a set of precise distributions of the observation y
 (credal set)
Imprecise prior distribution (coherent upper prevision):

\[\Pi[f] = \sup_{\pi \in \mathcal{P}} \pi[f] \]

Imprecise distribution of the observation \(y \) (coherent upper prevision):

\[Q_\theta[g] = \sup_{q_\theta \in \mathcal{M}_\theta} q_\theta[g] \quad \forall \theta \in \Theta \]

Upper expected loss for decision function \(\delta : \mathcal{Y} \to \mathcal{D} \) is

\[\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_\theta \sup_{q_\theta \in \mathcal{M}_\theta} \int W_\theta(\delta(y)) q_\theta(dy) \]
Task

Find a decision function $\tilde{\delta}$ which minimizes the upper expected loss

$$\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_\theta \sup_{q_\theta \in \mathcal{M}_\theta} \int W_\theta(\delta(y)) q_\theta(dy) = \min_{\delta}$$

Optimality criterion:

Γ-minimax criterion: worst-case consideration

Problem:

often, direct solution computationally intractable
Common Idea

Find another optimization problem which has the following properties:

- Solving this new optimization problem leads to a solution of the original problem.
- The new optimization problem should be computationally tractable!

→ Least Favorable Models
Least favorable model

- M_θ: credal set for the distribution of the observation y
- \mathcal{P}: credal set for the prior distribution

Find some $\tilde{q}_\theta \in M_\theta$ for every $\theta \in \Theta$ so that

$$\inf_\delta \sum_{\theta \in \Theta} \pi_\theta \sup_{q_\theta \in M_\theta} \int W_\theta(\delta(y)) q_\theta(dy) = \inf_\delta \sum_{\theta \in \Theta} \pi_\theta \int W_\theta(\delta(y)) \tilde{q}_\theta(dy) \quad \forall \pi \in \mathcal{P}$$

$(\tilde{q}_\theta)_{\theta \in \Theta} \in (M_\theta)_{\theta \in \Theta}$ is called least favorable model.

(\rightarrow Huber-Strassen (1973))
Then, we have:

The new optimization problem

\[
\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_{\theta} \int W_{\theta}(\delta(y)) \tilde{q}_{\theta}(dy) = \min_{\delta}!
\]

is computationally easier than the original optimization problem

\[
\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_{\theta} \sup_{q_{\theta} \in \mathcal{M}_{\theta}} \int W_{\theta}(\delta(y)) q_{\theta}(dy) = \min_{\delta}!
\]
Data-Based Decisions under Imprecise Probability and Least Favorable Models

... and we have:

There is a solution $\tilde{\delta}$ of the new optimization problem

$$\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_{\theta} \int W_{\theta}(\delta(y)) \tilde{q}_{\theta}(dy) = \min_{\delta}$$

which also solves the original optimisation problem is

$$\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_{\theta} \sup_{q_{\theta} \in \mathcal{M}_{\theta}} \int W_{\theta}(\delta(y)) q_{\theta}(dy) = \min_{\delta}$$

Robert Hable

LMU Munich
A least favorable model \((\tilde{q}_\theta)_{\theta \in \Theta} \in (\mathcal{M}_\theta)_{\theta \in \Theta}\) does not always exist!

That is: The presented procedure does not always work!

Question: When does it work?
Main Result

The **Main Theorem** provides:

A necessary and sufficient condition for the existence of a least favorable model \((\tilde{q}_\theta)_{\theta \in \Theta} \in (\mathcal{M}_\theta)_{\theta \in \Theta}\)

Remarks:

- exact condition is rather involved;
 uses some of Le Cam’s concepts such as
 - equivalence of models
 - conical measures (or standard measures)
- generalizes Buja (1984) and Huber-Strassen (1973)
Comparison with Buja 1984 – Some Technicalities

Buja 1984

- Credal sets \mathcal{M}_θ only contain σ-additive probability measures
- Condition: Compactness of credal sets \mathcal{M}_θ
 This is restrictive in Buja’s setup! (cf. Hable (2007B, E-print))

Now

- Credal sets \mathcal{M}_θ may contain finitely-additive probability measures (which are not σ-additive).
- Compactness of credal sets \mathcal{M}_θ comes for free in Walley’s setup.

A first conclusion:

- σ-additivity is not necessary here.
- Getting around σ-additivity is possible by Le Cam’s setup
Le Cam's setup

- Le Cam: strictly functional analytic approach to probability theory (cf. e.g. Hable (2007C, E-print))
- Rather involved and abstract (uses advanced functional analytic methods)
- "Traditional concepts" (σ-additivity, Markov-kernels, . . .): appropriate for small models (dominated by a σ-finite measure)

Le Cam's concepts: also appropriate for large models

A second conclusion:

Imprecise probabilities lead to large models

\rightarrow Le Cam’s concepts are appropriate for the theory of imprecise probabilities.

\rightarrow Maybe, they could/should be used further on.
References

 www.statistik.lmu.de/~hable/publications.html

 www.statistik.lmu.de/~hable/publications.html